Abstract

Insight into how genomes change and adapt due to selection addresses key questions in evolutionary biology and in domestication of animals and plants by humans. In that regard, the pig and its close relatives found in Africa and Eurasia represent an excellent group of species that enables studies of the effect of both natural and human-mediated selection on the genome. The recent completion of the draft genome sequence of a domestic pig and the development of next-generation sequencing technology during the past decade have created unprecedented possibilities to address these questions in great detail. In this paper, I review recent whole-genome sequencing studies in the pig and closely-related species that provide insight into the demography, admixture and selection of these species and, in particular, how domestication and subsequent selection of Sus scrofa have shaped the genomes of these animals.

Highlights

  • The domestic pig (Sus scrofa) is a member of the family of Suidae, a group of pig species from the order of Cetartiodactyla that originated some 20 to 30 million years ago (Mya) [1, 2]

  • Sequencing its genome was initiated with the establishment of the Swine Genome Sequencing Consortium (SGSC) in September 2003 [3], following the successful generation of genetic [4] and physical [5] maps for the pig

  • The strategy by the SGSC was based on hierarchical shotgun Sanger sequencing of bacterial artificial chromosome (BAC) clones representing a minimal tile path across the genome [6], which was supplemented at a later stage with Illumina next-generation sequencing data [7]

Read more

Summary

Background

The domestic pig (Sus scrofa) is a member of the family of Suidae, a group of pig species from the order of Cetartiodactyla that originated some 20 to 30 million years ago (Mya) [1, 2]. The strategy by the SGSC was based on hierarchical shotgun Sanger sequencing of bacterial artificial chromosome (BAC) clones representing a minimal tile path across the genome [6], which was supplemented at a later stage with Illumina next-generation sequencing data [7]. These efforts resulted in the assembly and publication of a draft reference genome sequence of S. scrofa in 2012 [8]. Suid speciation Members of the five genera of the Suidae family can be found across Africa, Europe, and Asia, and over the Groenen Genet Sel Evol (2016) 48:23

Publications Number of individuals
Findings
South China North China
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.