Abstract

Fueled by the Internet and nowadays unlimited connectivity expectations, the assembly of optoelectronic packages became a key element to enable the explosive growth in the communication field around the entire globe. The primary challenge in the field of advanced optoelectronics and photonic device packaging (e.g. laser diodes, VCSEL's, optical benches, lenses etc.) is to accurately align the different optical components in reference to each other for optimal optical device performance. This growing need for high precision die attach (<= 0.5um @ 3 sigma) systems and solutions at the shortest possible cycle times has been studied and implemented by AMICRA Microtechnologies. AMICRA's state of the art high accuracy automated assembly system solutions have been successfully used for over a decade in both a laboratory setup and a high volume manufacturing environment. From handling a large variety of substrate materials, thin and fragile chips with odd aspect ratios, lenses and other components, the flexible and dynamic vision alignment concept and the bonding process controls required to achieve high overall component placement accuracies has been AMCIRA's industry focus since the company's inception. While significant progress has been made to provide solutions for all communications and photonics applications there are currently still some challenges out there to be overcome, challenges that can also change on an application by application basis. Besides the technical challenges the cost effectiveness or cost per bond for those applications is a very critical overall success factor as well. This paper will elaborate on manufacturability concerns and equipment automation challenges associated with the key parameters of a Photonics applications high accuracy die attach process which, amongst others, not only require highly sophisticated vision alignment algorithms but also thermal transfer processes either using an eutectic process or a laser soldering technique. Given the ever shrinking packaging form factors, all of AMICRA's research and developments in the Photonics field have also been successfully introduced and applied in more traditional semiconductor applications which have an increasing need for high accuracy die attach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.