Abstract

Atmospheric temperature is one of the most important climate variables. This observational study presents detailed descriptions of the temperature variability imprinted in the 9-year brightness temperature data acquired by the Advanced Microwave Sounding Unit-Instrument A (AMSU-A) aboard Aqua since September 2002 over tropical oceans. A non-linear, adaptive method called the Ensemble Joint Multiple Extraction has been employed to extract the principal modes of variability in the AMSU-A/Aqua data. The semi-annual, annual, quasi-biennial oscillation (QBO) modes and QBO–annual beat in the troposphere and the stratosphere have been successfully recovered. The modulation by the El Nino/Southern oscillation (ENSO) in the troposphere was found and correlates well with the Multivariate ENSO Index. The long-term variations during 2002–2011 reveal a cooling trend (−0.5 K/decade at 10 hPa) in the tropical stratosphere; the trend below the tropical tropopause is not statistically significant due to the length of our data. A new tropospheric near-annual mode (period ~1.6 years) was also revealed in the troposphere, whose existence was confirmed using National Centers for Environmental Prediction Reanalysis air temperature data. The near-annual mode in the troposphere is found to prevail in the eastern Pacific region and is coherent with a near-annual mode in the observed sea surface temperature over the Warm Pool region that has previously been reported. It remains a challenge for climate models to simulate the trends and principal modes of natural variability reported in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call