Abstract

Progressive semiconductor device scaling in each technology node requires the formation of shallower junctions, and thus lower energy implants. The difficulties associated with extraction and transport of low energy beams often result in a loss in wafer throughput. Implantation of boron using the molecular compound decaborane has been found to allow for the shallow implantation of boron without a significant design change in the implanter. The decaborane molecule has 10 boron atoms and 14 hydrogen atoms. The implanted dose is ten times the electrical dose and the implanted depth is equivalent to the depth of a boron beam at 1/11th of the extraction energy. This advantage can only be exploited with an ion source that does not destroy the fragile molecule. We report on the design of an ion source capable of ionizing decaborane without significant fragmentation of the molecule. After it was shown that the decaborane molecule fragments above 350 °C an ion source was designed to prevent thermal dissociation of the molecule. Competitive boron dose rates were achieved using this source in a commercial high current implanter. In addition, evidence is shown that a decaborane dimer is formed in the ion source and can be implanted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.