Abstract

In this article, a deadbeat current controller for an LC -coupling hybrid active power filter ( LC -HAPF) is proposed, which can track with the reference compensation current with low steady-state error and fast dynamic response. Moreover, it can lead LC -HAPF to be operating at a fixed switching frequency with low output current ripples, thus reducing the size of the filtering circuit. First of all, the mathematical model of the deadbeat current controller for the LC -HAPF is deduced based on its single-phase equivalent circuit. Then, the closed-loop control block diagram and its $s$ -domain model is proposed and built. After that, the stability issue and parameter design of the proposed deadbeat current controller are analyzed and discussed. Finally, the compensating performance of the deadbeat current controller for the LC -HAPF is verified by simulation and experimental results compared with the conventional hysteresis band pulsewidth modulation (PWM) control, the proportional-integral (PI) control, and the proportional multi-resonant (PMR) control for the LC -HAPF, which shows its effectiveness and superior compensating performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.