Abstract
Accurate stator current control is essential in high performance field orientation-controlled induction motor drives. Any current error degrades the drive's performance in the same way as an incorrectly tuned field orientation. This paper presents an efficient current control scheme that can achieve high accuracy and a fast dynamic response. This scheme uses voltage decoupling and deadbeat control loops. The decoupling controller provides the voltage needed to oppose the motor's back EMF. The deadbeat controller reduces the current error as fast as possible and stabilizes the system. The control law does not require knowledge of the rotor flux and is independent of the field orientation control tuning. Good static and dynamic performances were obtained in both the simulation and experimental verifications. Because the motor leakage inductance and resistance information were required for this control method, the influence of the estimation errors for these parameters was also investigated. The results show that the leakage inductance model error might cause a current ripple. However, this parameter can be tuned to its correct value easily by inspecting the current response.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.