Abstract

PKD1, which has a relatively high mutation rate, is highly polymorphic, and the role of PKD1 is incompletely defined. In the current study, in order to determine the molecular etiology of a family with autosomal dominant polycystic kidney disease, the pathogenicity of an frameshift mutation in the PKD1 gene, c.9484delC, was evaluated. The family clinical data were collected. Whole exome sequencing analysis determined the level of this mutation in the proband's PKD1, and Sanger sequencing and bioinformatics analysis were performed. SIFT, Polyphen2, and MutationTaster were used to evaluate the conservation of the gene and pathogenicity of the identified mutations. SWISS-MODEL was used to predict and map the protein structure of PKD1 and mutant neonate proteins. A novel c.9484delC (p.Arg3162Alafs*154) mutation of the PKD1 gene was identified by whole exome sequencing in the proband, which was confirmed by Sanger sequencing in his sister (II7). The same mutation was not detected in the healthy pedigree members. Random screening of 100 normal and end-stage renal disease patients did not identify the c.9484delC mutation. Bioinformatics analysis suggested that the mutation caused the 3162 nd amino acid substitution of arginine by alanine and a shift in the termination codon. As a result, the protein sequence was shortened from 4302 amino acids to 3314 amino acids, the protein structure was greatly changed, and the PLAT/LH2 domain was destroyed. Clustal analysis indicated that the altered amino acids were highly conserved in mammals. A novel mutation in the PKD1 gene has been identified in an affected Chinese family. The mutation is probably responsible for a range of clinical manifestations for which reliable prenatal diagnosis and genetic counseling may be provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call