Abstract

A new way of measuring magnetic field distribution is proposed, based on the change of the response of a magnetostrictive delay line (MDL) to varying dc magnetic field. The principal idea runs as follows: an array of wires Ci, transmitting pulsed current Ie, crosses at 45° an array of MDL Lj. The resulting pulsed field at the crossing points Pij excites an acoustic pulses in the lines, detected by short coils placed close to one end, in terms of voltage Voij. If a dc magnetic field Hdc is applied at the point Pij, the acoustic pulse and hence Voij change. Experimental results are given, showing the dependence of V0 on the applied dc field under various values of Ie for the case of a 1 mm wide Metglas 2605SC MDL. The function of Vom vs Hdc under various values of Ie is also given, where Vom is the maximum value of the absolute positive and negative peaks of V0. The first derivative of this function equals zero for two values of Hdc, corresponding to approximately equal positive and negative peaks of V0. So, having divided this function in 4 parts, comparison of these two peaks and experimental data are used to find the orientation and magnitude of the dc field on the MDL axis. It was also found that V0, corresponding to an Hdc applied at an angle v to the MDL equals the response of a dc field having a magnitude Hdc cos(v) and applied along the length of the line. So, by having another array of delay lines L′i identical but orthogonal to the previous MDL array Lj and crossing in 45° the conducting wires array Ci, we can keep the same number of crossing points. Hence, measurements from two delay lines Li and L′i corresponding to Pij, give a 2-d vector of the dc magnetic field applied at this point. The uniformity and the resolution of such a transducer can be improved by using the recently developed FeSiB wires after stress annealing. Future work is to be done to increase the frequency and the range of the measurable dc field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call