Abstract

A daylight climate chamber was designed with the aim of testing new greenhouse climate control strategies on a small scale. Precise control and measure ment of the chamber climate and long-term measurement of canopy carbon dioxide (CO2) exchan ge was possible. The software was capable of simulating a climate computer used in a full-scale greenhouse. The parameters controlled were air temperature, CO2 concentration, irradiance, air flow, and irrigation. The chamber was equipped with a range of sensors measuring the climate in the air of the chamber and in the plant canopy. A chamber perfor mance experiment with chrysanthemum (Chrysanthemum grandiflorum `Coral Charm') plants grown in perlite was carried out over the course of 3 weeks. Five air temperature treatments at a day length of 13 hours were carried out, all with the same 24-hour mean temperature of 20 °C, but different day temperatures (18.0 to 25.1 °C) and night temperatures (14.0 to 22.4 °C). Rate of canopy CO2 exchange in the chambers was calculated. In the range of day temperatures used, rates of canopy photosynthesis were almost equal. The results showed that leaf area and plant dry weight after 3 weeks were not significantly different among temperature treatments, which is promising for further investigations of how climate control can be used to decrease energy consumption in greenhouse production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.