Abstract

The emergence of distributed generators has changed the operational mode and fault characteristics of the distribution network, in a way which can severely influence protection. This paper proposes a d-axis-based current differential protection scheme. The d-axis current characteristics of inverter-interfaced distributed generators and synchronous generators are analyzed. The differential protection criterion using sampling values of the d-axis current component is then constructed. Compared to conventional phase-based current differential protection, the proposed protection reduces the number of required communication channels, and is suitable for distribution networks with inverter-interfaced distributed generators with complex fault characteristics. Finally, a 10 kV active distribution network model is built in the PSCAD platform and protection prototypes are developed in RTDS. Superior sensitivity and fast speed are verified by simulation and RTDS-based tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call