Abstract
This paper presents H-Voice, a dataset of 6672 histograms of original and fake voice recordings obtained by the Imitation [1,2] and the Deep Voice [3] methods. The dataset is organized into six directories: Training_fake, Training_original, Validation_fake, Validation_original, External_test1, and External_test2. The training directories include 2088 histograms of fake voice recordings and 2020 histograms of original voice recordings. Each validation directory has 864 histograms obtained from fake voice recordings and original voice recordings. Finally, External_test1 has 760 histograms (380 from fake voice recordings obtained by the Imitation method and 380 from original voice recordings), and External_test2 has 76 histograms (72 from fake voice recordings obtained by the Deep Voice method and 4 from original voice recordings). With this dataset, the researchers can train, cross-validate and test classification models using machine learning techniques to identify fake voice recordings.
Highlights
This paper presents H-Voice, a dataset of 6672 histograms of original and fake voice recordings obtained by the Imitation [1,2] and the Deep Voice [3] methods
External_test1 has 760 histograms (380 from fake voice recordings obtained by the Imitation method and 380 from original voice recordings), and External_test2 has 76 histograms (72 from fake voice recordings obtained by the Deep Voice method and 4 from original voice recordings)
Validation_fake: 864 histograms from fake voice recordings obtained by the Imitation method
Summary
This paper presents H-Voice, a dataset of 6672 histograms of original and fake voice recordings obtained by the Imitation [1,2] and the Deep Voice [3] methods. Each validation directory has 864 histograms obtained from fake voice recordings and original voice recordings. Subject Specific subject area Type of data How data were acquired
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.