Abstract

AbstractModeling high‐dimensional dynamic processes is a challenging task. In this regard, probabilistic slow feature analysis (PSFA) is revealed to be advantageous for dynamic soft sensor modeling, which can extract slowly varying intrinsic features from high‐dimensional data. However, nonlinearities prevalent in industrial processes are not considered, which could lead to unsatisfactory prediction performance. In this paper, a weighted PSFA (WPSFA)‐based soft sensor model is proposed for nonlinear dynamic chemical process. In WPSFA, a weighted log‐likelihood function of complete data is constructed to linearize the nonlinear state emission equation. Then, the expectation maximization algorithm is applied to estimate the model parameters and a locally weighted regression model is established for quality prediction. Finally, the feasibility and effectiveness of the proposed approach are well illustrated through a numerical example and a real industrial process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.