Abstract

The stability margin is an important attribute for the robustness analysis of the closed loop in a control system design, which indicates the tolerant-ability of the closed-loop stability to system uncertainty (or fault). Seeking to develop an advanced data-driven monitoring and management framework for control performance (especially for robust stability) of the closed-loop system, this paper presents a study on the data-driven realization of the closed-loop stability margin, and its application to control-performance-oriented process monitoring. Specifically, without identifying the system parameters, a data-driven realization of the stability margin is first determined based on the identified multiplication operator of the closed-loop transfer function matrices using time-domain closed-loop measurements. Second, a control-performance-oriented process monitoring approach is proposed based on the determined data-driven realization of the stability margin. The contributions of this paper will bridge the gap between the model-based robustness analysis/design and the data-driven techniques for the future research. The main results of this paper are verified and demonstrated through the case studies on a dc motor benchmark system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.