Abstract

This paper presents a novel parametric model that will be used to optimize the yaw settings of wind turbines in a wind plant for improved electrical energy production of the whole wind plant. The model predicts the effective steady-state flow velocities at each turbine, as well as the resulting electrical energy productions, as a function of the axial induction and the yaw angle of the different rotors. The model has a limited number of parameters that are estimated based on data. Moreover, it is shown how this model can be used to optimize the yaw settings using a game-theoretic approach. In a case study we demonstrate that our novel parametric model fits the data generated by a high-fidelity computational fluid dynamics model of a small wind plant, and that the data-driven yaw optimization control has great potential to increase the wind plant's electrical energy production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.