Abstract
In this paper, we propose a general data-driven framework that unifies the valuation and risk measurement of financial derivatives, which is especially useful in markets with thinly-traded derivatives. We first extract the empirical characteristic function from market-observable time series for the underlying asset prices, and then utilize Fourier techniques to obtain the physical non-parametric density and cumulative distribution function for the log-returns process, based on which we compute risk measures. Then we risk-neutralize the non-parametric density and distribution functions to model-independently valuate a variety of financial derivatives, including path-independent European options and path-dependent exotic contracts. By estimating the state-price density explicitly, and utilizing a convenient basis representation, we are able to greatly simplify the pricing of exotic options all within a consistent model-free framework. Numerical examples, and an empirical example using real market data (Brent crude oil prices) illustrate the accuracy and versatility of the proposed method in handling pricing and risk management of multiple financial contracts based solely on observable time series data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.