Abstract
Applying a design of experiments methodology to the molten salt synthesis of nanoporous carbons enables inverse design and optimization of nitrogen (N)-rich carbon adsorbents with excellent CO2 /N2 selectivity and appreciable CO2 capacity for carbon capture via swing adsorption from dilute gas mixtures such as natural gas combined cycle flue gas. This data-driven study reveals fundamental structure-function relationships between the synthesis conditions, physicochemical properties, and achievable selective adsorption performance of N-rich nanoporous carbons derived from molten salt synthesis for CO2 capture. Taking advantage of size-sieving separation of CO2 (3.30 Å) from N2 (3.64 Å) within the turbostratic nanostructure of these N-rich carbons, while limiting deleterious N2 adsorption in a weaker adsorption site that harms selectivity, enables a large CO2 capacity (0.73mmol g-1 at 30.4Torr and 30 °C) with noteworthy concurrent CO2 /N2 selectivity as predicted by the ideal adsorbed solution theory(SIAST = 246) with an adsorbed phase purity of 91% from a simulated gas stream containing only 4% CO2 . Optimized N-rich porous carbons, with good physicochemical stability, low cost, and moderate regeneration energy, can achieve performance for selective CO2 adsorption that competes with other classes of advanced porous materials such as chemisorbing zeolites and functionalized metal-organic frameworks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.