Abstract
We present in this paper a combined technique of long short-term memory and hidden Markov model to prediction problems of crack propagation in engineering. The primary advantage of the hidden Markov model is that the ability to learn with less information, in other words, its future states do not depend on past ones, based only on the present state. We use long short-term memory to train data, and output consequences improved by adding predicted different changes that are computed by hidden Markov model. Applying this combined method to numerical examples of forecasting crack propagation of singled-edge-notched beam forced by 4-point shear, crack-height growth in Marcellus shale under the hydraulic fracturing and deformations of dam structures made from fiber reinforced concrete material is addressed. The tests were carried out with many different sizes of experimental data. It was found that a combined long short-term memory - hidden Markov model results in more accurate solution than only using long short-term memory, especially in the case of the dataset that is lack of information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.