Abstract

This paper outlines the application of a new data-based mechanistic (DBM) modelling methodology to the characterization of the sediment transmission dynamics in a small upland reservoir, Wyresdale Park, Lancashire. The DBM modelling strategy exploits advanced statistical procedures to infer the dynamic model structure and its associated parameters directly from the instrumented data, producing a parametrically efficient, continuous time, transfer function model which relates suspended sediment load at the reservoir inflow to the outflow at the event scale. The associated differential equation model parameters have physical attributes which can be interpreted in terms of sediment transmission processes and associated reservoir trap efficiency. Sedigraph analysis suggests that wind-induced resuspension episodically supplies an additional load to the reservoir outlet. The stochastic nature of the DBM model makes it ideal for evaluating the effects of uncertainty through Monte Carlo simulations (MCS) for discharge and sediment transmission. Copyright © 2000 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call