Abstract
An intelligent statistical approach is proposed for monitoring the performance of multivariate model predictive control (MPC) controller, which systematically integrates both the assessment and diagnosis procedures. Model predictive error is included into the monitored variable set and a 2-norm based covariance benchmark is presented. By comparing the data of a monitored operational period with the “golden” user-predefined one, this method can properly evaluate the performance of an MPC controller at the monitored operational stage. Characteristic direction information is mined from the operating data and the corresponding classes are built. The eigenvector angle is defined to describe the similarity between the current data set and the established classes, and an angle-based classifier is introduced to identify the root cause of MPC performance degradation when a poor performance is detected. The effectiveness of the proposed methodology is demonstrated in a case study of the Wood–Berry distillation column system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.