Abstract

This text describes methods to organize a large set of optimized airfoils in a relational database and its application in throughflow design. Optimized airfoils are structured in five dimensions: inlet Mach number, blade stagger angle, pitch-chord ratio, maximum thickness-chord ratio and a parameter for aerodynamic loading. In this space, a high number of airfoil geometries is generated by means of numerical optimization. Each airfoil geometry is tailored to its specific requirements and optimized for a wide working range as well as low losses. During the optimization of each airfoil, performance in design and off-design conditions is evaluated with the blade-to-blade flow solver MISES. Together with airfoil geometry, the database stores automatically calibrated correlations which describe cascade performance in throughflow calculation. Based on these methods, two subsonic stages of a 4.5-stage transonic research compressor are redesigned. Performance of baseline and updated geometries is evaluated with 3D CFD. The overall approach offers accurate throughflow design incorporating optimized airfoil shapes and a fast transition from throughflow to 3D CFD design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.