Abstract

Abstract. A database containing 10 min means of solar irradiance measured on a horizontal plane in several ultraviolet and visible bands from July 2014 to December 2016 at three stations in the area of the city of Ostrava (Czech Republic) is presented. The database contains time series of 10 min average irradiances or photosynthetic photon flux densities measured in the following spectral bands: 280–315 nm (UVB); 315–380 nm (UVA); and 400–700 nm (photosynthetically active radiation, PAR); 510–700 nm; 600–700 nm; 610–680 nm; 690–780 nm; 400–1100 nm. A series of meteorological variables including relative air humidity and air temperature at surface is also provided at the same 10 min time step at all three stations, and precipitation is provided for two stations. Air pressure, wind speed, wind direction, and concentrations of air pollutants PM10, SO2, NOx, NO, NO2 were measured at the 1 h time step at the fourth station owned by the Public Health Institute of Ostrava. The details of the experimental sites and instruments used for the measurements are given. Special attention is given to the data quality, and the original approach to the data quality which was established is described in detail. About 130 000 records for each of the three stations are available in the database. This database offers a unique ensemble of variables having a high temporal resolution and it is a reliable source for radiation in relation to environment and vegetation in highly polluted areas of industrial cities in the of northern mid-latitudes. The database has been placed on the PANGAEA repository (https://doi.org/10.1594/PANGAEA.879722) and contains individual data files for each station.

Highlights

  • Solar radiation is the crucial factor which influences life on Earth

  • There were a total of 131 142 records for station S1 (BGOU), 131 558 records for station S2 (BGOU), and 130 659 records for station S3 (CHMI) from July 2014 to December 2016

  • Because of the specific environmental conditions of the stations, these data have some limitations that should be taken into account before use. Because of their high temporal resolution and the period spanning more than 2 years, these data constitute a precious tool for the estimation of the radiation environment in an industrial city in central Europe and they can be used as input data for any environmental modelling, e.g. for atmospheric chemistry models or urbanistic studies

Read more

Summary

Introduction

Solar radiation is the crucial factor which influences life on Earth. The intensity and spectral characteristics of incident solar radiation are important properties which cause physiological responses of plants, animals, and humans. Especially in the ultraviolet UVB 280– 315 nm, UVA 315–400 nm, and visible (VIS) 380–760 nm spectral regions, is the key factor influencing plants. Solar radiation can be a source of energy for plant photosynthesis, mainly the blue, and red components of photosynthetically active radiation (PAR, 400–700 nm; Ohashi-Kaneko et al, 2007; Johkan et al, 2010). It is a source of information (UVB, UVA, blue and red components of PAR) as plants contain photoreceptors which are capable of recognizing individual spectral regions: the UVR8 photoreceptor for UVB radiation (Tilbrook et al, 2013); cryptochromes and phototropins for UVA radiation (Verdaguer et al, 2017); and cryptochromes, phototropins, and phytochromes for PAR (Casal, 2013). UVB is mostly harmful and plants try to avoid damage by using, for example, UV shielding by produc-

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call