Abstract
Forecast combination methods reduce the information in a vector of forecasts to a single combined forecast by using a set of combination weights. Although there are several methods, a typical strategy is the use of the simple arithmetic mean to obtain the combined forecast. A priori, the use of this mean could be justified when all the forecasters have had the same performance in the past or when they do not have enough information. In this paper, we explore the possibility of using entropy econometrics as a procedure for combining forecasts that allows to discriminate between bad and good forecasters, even in the situation of little information. With this purpose, the data-weighted prior (DWP) estimator proposed by Golan (2001) is used for forecaster selection and simultaneous parameter estimation in linear statistical models. In particular, we examine the ability of the DWP estimator to effectively select relevant forecasts among all forecasts. We test the accuracy of the proposed model with a simulation exercise and compare its ex ante forecasting performance with other methods used to combine forecasts. The obtained results suggest that the proposed method dominates other combining methods, such as equal-weight averages or ordinal least squares methods, among others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.