Abstract

We propose a data structure to maintain a collection of vertex-disjoint trees under a sequence of two kinds of operations: a link operation that combines two trees into one by adding an edge, and a cut operation that divides one tree into two by deleting an edge. Our data structure requires O(log n) time per operation when the time is amortized over a sequence of operations. Using our data structure, we obtain new fast algorithms for the following problems: (1) Computing deepest common ancestors. (2) Solving various network flow problems including finding maximum flows, blocking flows, and acyclic flows. (3) Computing certain kinds of constrained minimum spanning trees. (4) Implementing the network simplex algorithm for the transshipment problem. Our most significant application is (2); we obtain an O(mn log n)-time algorithm to find a maximum flow in a network of n vertices and m edges, beating by a factor of log n the fastest algorithm previously known for sparse graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.