Abstract
In this paper, we simulate and analyze the impact of financial regulations concerning the collateralization of derivative trades on systemic risk - a topic that has been vigorously discussed since the financial crisis in 2007/08. Experts often disagree on the efficacy of these regulations. Compounding this problem banks regard their trade data required for a full analysis as proprietary. We adapt a simulation technology combining advances in graph theory to randomly generate entire financial systems sampled from realistic distributions with a novel open source risk engine to compute risks in financial systems under different regulations. This allows us to consistently evaluate, predict and optimize the impact of financial regulations on all levels - from a single trade to systemic risk - before it is implemented. The resulting data set is accessible to contemporary data science techniques like data mining, anomaly detection and visualization. We find that collateralization reduces the costs of resolving a financial system in crisis, yet it does not change the distribution of those costs and can have adverse effects on individual participants in extreme situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.