Abstract

The availability of quantitative text analysis methods has provided new ways of analyzing literature in a manner that was not available in the pre-information era. Here we apply comprehensive machine learning analysis to the work of William Shakespeare. The analysis shows clear changes in the style of writing over time, with the most significant changes in the sentence length, frequency of adjectives and adverbs, and the sentiments expressed in the text. Applying machine learning to make a stylometric prediction of the year of the play shows a Pearson correlation of 0.71 between the actual and predicted year, indicating that Shakespeare's writing style as reflected by the quantitative measurements changed over time. Additionally, it shows that the stylometrics of some of the plays is more similar to plays written either before or after the year they were written. For instance, Romeo and Juliet is dated 1596, but is more similar in stylometrics to plays written by Shakespeare after 1600. The source code for the analysis is available for free download.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.