Abstract

Due to limited resource, noise and unreliable link, data loss and sensor faults are common in medical body sensor networks (BSN). Most available works used data reconstruction to improve data quality in traditional wireless sensor networks (WSN). However, existing data reconstruction schemes using redundant information of WSN can not provide a satisfactory accuracy for BSN. In light of this, a Bayesian network based data reconstruction scheme is formalized in this paper, which rebuilds data using conditional probabilities of body sensor readings to recover missing data and sensor faults, rather than the redundant information collected from a large number of sensors. Experiments on extensive online data set show that the performance of our scheme outperforms all available data reconstruction schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.