Abstract
In this paper, we address the problem of joint power control and scheduling for minimizing broadcast delay in wireless mesh networks. Given a set of mesh routers and a routing tree, we aim to assign power for relay nodes and compute an optimal transmission schedule such that the total delay for a packet broadcast from the root to all the routers is minimized. We consider rate adaptation in our scheme. This is a difficult issue. High power enables high data rate but causes high interference, whereas low power allows more concurrent transmissions at the expense of data rate. We study the tradeoff between data rate and concurrency and propose a balanced method. We introduce a metric called standard deviation of average remaining broadcast time to determine the priority of the two parameters. When this metric is greater than a threshold, the nodes will take the data-rate-first approach to increase the data rate; otherwise, the concurrency-first approach will be used to increase the number of concurrent transmissions. Theoretical analysis is given to show the upper and lower bounds of this metric. Simulations have demonstrated that our proposed method can reduce the broadcast delay significantly as compared with existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.