Abstract

In this paper, we address the large-scale biological sequence alignment problem, which has an increasing demand in computational biology. We employ data parallelism paradigm that is suitable for handling large-scale processing on multi-core computers to achieve a high degree of parallelism. Using the data parallelism paradigm, we propose a general strategy which can be used to speed up any multiple sequence alignment method. We applied five different clustering algorithms in our strategy and implemented rigorous tests on an 8-core computer using four traditional benchmarks and artificially generated sequences. The results show that our multi-core-based implementations can achieve up to 151-fold improvements in execution time while losing 2.19% accuracy on average. The source code of the proposed strategy, together with the test sets used in our analysis, is available on request.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.