Abstract
The destination image branding is the domain of tourism industry where the facts and information is collected and evaluated for finding the credibility of a target tourist destination. Manual collection and processing of collected information accurately is a complicated and time consuming task therefore a data mining model is suggested ,in this presented work that collect and evaluate the destination image accurately and based on evaluation can make the recommendations about visits of tourist. In order to perform this task data mining techniques are applied on text data source. In first the data is extracted from the Google search engine and it is preprocessed for make it impure. In further the data is labeled based on the positive and negative words available in the collected facts. Finally the clustering and classification of text is performed. For clustering of data FCM (fuzzy c means) clustering algorithm and for classification the Bayesian classifier is used. Based on final classification of text data the decision is made for the destination visits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.