Abstract

A recursive model-based data fusion algorithm for multi-sensor microburst hazard assessment is described. An analytical microburst model is used to approximate the actual windfield, and a set of 'best' model parameters are estimated from measured winds. The winds corresponding to the best parameter set can then be used to compute alerting factors such as microburst position, extent, and intensity. The estimation algorithm is based on an iterated extended Kalman filter which uses the microburst model parameters as state variables. Microburst state dynamic and process noise parameters are chosen based on measured microburst statistics. The estimation method is applied to data from a time-varying computational simulation of a historical microburst event to demonstrate its capabilities and limitations. Selection of filter parameters and initial conditions is discussed. Computational requirements and datalink bandwidth considerations are also addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.