Abstract

The presence of chemicals causing significant adverse human health and environmental effects during end-of-life (EoL) stages is a challenge for implementing sustainable management efforts and transitioning towards a safer circular life cycle. Conducting chemical risk evaluation and exposure assessment of potential EoL scenarios can help understand the chemical EoL management chain for its safer utilization in a circular life-cycle environment. However, the first step is to track the chemical flows, estimate releases, and potential exposure pathways. Hence, this work proposes an EoL data engineering approach to perform chemical flow analysis and screening to support risk evaluation and exposure assessment for designing a safer circular life cycle of chemicals. This work uses publicly-available data to identify potential post-recycling scenarios (e.g., industrial processing/use operations), estimate inter-industry chemical transfers, and exposure pathways to chemicals of interest. A case study demonstration shows how the data engineering framework identifies, estimates, and tracks chemical flow transfers from EoL stage facilities (e.g., recycling and recovery) to upstream chemical life cycle stage facilities (e.g., manufacturing). Also, the proposed framework considers current regulatory constraints on closing the recycling loop operations and provides a range of values for the flow allocated to post-recycling uses associated with occupational exposure and fugitive air releases from EoL operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.