Abstract

In this paper, we introduce a novel data-driven inverse dynamics estimator based on Gaussian Process Regression. Driven by the fact that the inverse dynamics can be described as a polynomial function on a suitable input space, we propose the use of a novel kernel, called Geometrically Inspired Polynomial Kernel (GIP). The resulting estimator behaves similarly to model-based approaches as concerns data efficiency. Indeed, we proved that the GIP kernel defines a finite-dimensional Reproducing Kernel Hilbert Space that contains the inverse dynamics function computed through the Rigid Body Dynamics. The proposed kernel is based on the recently introduced Multiplicative Polynomial Kernel, a redefinition of the classical polynomial kernel equipped with a set of parameters that allows for a higher regularization. We tested the proposed approach in a simulated environment, and also in real experiments with a UR10 robot. The obtained results confirm that, compared to other data-driven estimators, the proposed approach is more data-efficient and exhibits better generalization properties. Instead, with respect to model-based estimators, our approach requires less prior information and is not affected by model bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.