Abstract

In this study, a data-driven model predictive control (MPC) method is proposed for the optimal control of a doubly-fed variable-speed pumped storage unit. This method combines modern control theory with the dynamic characteristics of the pumped storage unit to establish an accurate dynamic model based on actual operating data. In each control cycle, the MPC uses the system model to predict future system behavior and determines the optimal control input sequence by solving the constrained optimization problem, thereby effectively dealing with the nonlinearity, time-varying characteristics, and multivariable coupling problems of the system. When compared with a traditional PID control, this method significantly improves control accuracy, response speed, and system stability. The simulation results show that the proposed MPC method exhibits better steady-state error, overshoot, adjustment time, and control energy under various operating conditions, demonstrating its advantages in complex multivariable systems. This study provides an innovative solution for the efficient control of doubly-fed variable-speed pumped storage units and lays a solid foundation for the efficient utilization of new energy sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.