Abstract

A multidimensional visualization technique is described for fault detection and diagnosis of a multivariate process by principal component analysis (PCA) of historical data. The technique uses a parallel coordinate system to visualize data that allows for monitoring of abnormal process events that lead to process faults, enabling the visualization of multiple principal components effectively and facilitating the study of how each principal component varies with respect to time. The principal component and residual space control limits are established for fault detection and the Random Forests machine learning tool is adopted for fault diagnosis. The key features of the methodology are demonstrated through a study of the benchmark Tennessee Eastman process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.