Abstract

Digital learning is the use of telecommunication technology to deliver information for education and training. As the increased acceleration of the propagation speed of the web, a lot of data collected by automated or semi-automated way. The 4s (Volume, Velocity, Variety and Veracity) of big data increase the challenge to extract useful value via systemic framework. This study aims to construct the data model of big data digital learning. Based on the digital learning data, data-driven innovation framework was proposed to identify data form and collect data. Bayesian network was proposed to capture learning model to extract user experience of students to enhance learning efficiency. Empirical study was conducted on a university to validate the proposed approach. The results have been implemented to support the strategies to improve student learning outcomes and competitiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.