Abstract

Over the past decades, several computer codes have been developed for simulation and analysis of thermal-hydraulics and system response in nuclear reactors under operating, abnormal transient, and accident conditions. However, simulation errors and uncertainties still inevitably exist even while these codes have been extensively assessed and used. In this work, a data-driven framework (Optimal Mesh/Model Information System, OMIS) is formulated and demonstrated to estimate simulation error and suggest optimal selection of computational mesh size (i.e., nodalization) and constitutive correlations (e.g., wall functions and turbulence models) for low-fidelity, coarse-mesh thermal-hydraulic simulation, in order to achieve accuracy comparable to that of high-fidelity simulation. Using results from high-fidelity simulations and experimental data with many fast-running low-fidelity simulations, an error database is built and used to train a machine learning model that can determine the relationship between local simulation error and local physical features. This machine learning model is then used to generate insight and help correct low-fidelity simulations for similar physical conditions. The OMIS framework is designed as a modularized six-step procedure and accomplished with state-of-the-art methods and algorithms. A mixed-convection case study was performed to illustrate the entire framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call