Abstract

Epidemiological models allow for quantifying the dynamic characteristics of large-scale outbreaks. However, capturing detailed and accurate epidemiological information often requires consideration of multiple kinetic mechanisms and parameters. Due to the uncertainty of pandemic evolution, such as pathogen variation, host immune response and changes in mitigation strategies, the parameter evaluation and state prediction of complex epidemiological models are challenging. Here, we develop a data-driven epidemic model with a generalized SEIR mechanistic structure that includes new compartments, human mobility and vaccination protection. To address the issue of model complexity, we embed the epidemiological model dynamics into physics-informed neural networks (PINN), taking the observed series of time instances as direct input of the network to simultaneously infer unknown parameters and unobserved dynamics of the underlying model. Using actual data during the COVID-19 outbreak in Australia, Israel, and Switzerland, our model framework demonstrates satisfactory performance in multi-step ahead predictions compared to several benchmark models. Moreover, our model infers time-varying parameters such as transmission rates, hospitalization ratios, and effective reproduction numbers, as well as calculates the latent period and asymptomatic infection count, which are typically unreported in public data. Finally, we employ the proposed data-driven model to analyze the impact of different mitigation strategies on COVID-19.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.