Abstract

This paper studies the expected optimal value of a mixed 0-1 programming problem with uncertain objective coefficients following a joint distribution. We assume that the true distribution is not known exactly, but a set of independent samples can be observed. Using the Wasserstein metric, we construct an ambiguity set centered at the empirical distribution from the observed samples and containing the true distribution with a high statistical guarantee. The problem of interest is to investigate the bound on the expected optimal value over the Wasserstein ambiguity set. Under standard assumptions, we reformulate the problem into a copositive program, which naturally leads to a tractable semidefinite-based approximation. We compare our approach with a moment-based approach from the literature on three applications. Numerical results illustrate the effectiveness of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.