Abstract

In this paper, a data-driven-based computational homogenization method based on neural networks is proposed to describe the nonlinear electric conduction in random graphene-polymer nanocomposites. In the proposed technique, the nonlinear effective electric constitutive law is provided by a neural network surrogate model constructed through a learning phase on a set of RVE nonlinear computations. In contrast to multilevel (FE $$^2$$ ) methods where each integration point is associated with a full nonlinear RVE calculation, the nonlinear macroscopic electric field-electric flux relationship is efficiently evaluated by the surrogate neural network model, reducing drastically (by several order of magnitudes) the computational times in multilevel calculations. Several examples are presented, where the RVE contains aligned graphene sheets embedded in a polymer matrix. The nonlinear behavior is due to the modeling of the tunelling effect at the scale of graphene sheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.