Abstract
A recent relevant innovation in last-mile delivery is to consider the possibility of goods being delivered by couriers appointed through crowdsourcing. In this paper we focus on the setting of in-store customers delivering goods, ordered by online customers, on their way home. We assume that not all the proposed delivery tasks will necessarily be accepted, and use logistic regression to model the crowd agents’ willingness to undertake a delivery. This model is then used to build a novel compensation scheme that determines reward values, based on the current plan for the professional fleet’s routes and on the couriers’ probabilities of acceptance, by employing a direct search algorithm that seeks to minimise the expected cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.