Abstract
An accurate State of Charge (SoC) estimation method is one of the most significant and difficult techniques to promote the commercialization of electric vehicles. The paper attempts to make three contributions. (1) Through the recursive least square algorithm based identification method, the parameter of the lumped parameter battery model can be updated at each sampling interval with the real-time measurement of battery current and voltage, which is called the data-driven method. Note that the battery model has been improved with a simple electrochemical equation for describing the open circuit voltage against different aging levels and SoC. (2) Through the real-time updating technique of model parameter, a data-driven based adaptive SoC estimator is established with an adaptive extended Kalman filter. It has the potential to overcome the estimation error against battery degradation and varied operating environments. (3) The approach has been verified by different loading profiles of various health states of Lithium-ion polymer battery (LiPB) cells. The results indicate that the maximum estimation errors of voltage and SoC are less than 1% and 1.5% respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.