Abstract

Collaboration among individuals with diverse skills and personalities is crucial to producing high-quality software. The success of any software project depends on the team’s cohesive functionality and mutual complementation. This study introduces a data-centric methodology for forming Software Engineering (SE) teams centred around personality traits. Our study analysed data from an SE course where 157 students in 31 teams worked through four project phases and were evaluated based on deliverables and instructor feedback. Using the Five-Factor Model (FFM) and a variety of statistical tests, we determined that teams with higher levels of extraversion and conscientiousness, and lower neuroticism, consistently performed better. We examined team members’ interactions and developed a predictive model using extreme gradient boosting. The model achieved a 74% accuracy rate in predicting inter-member satisfaction rankings. Through graphical explainability, the model underscored incompatibilities among members, notably those with differing levels of extraversion. Based on our findings, we introduce a team formation algorithm using Simulated Annealing (SA) built upon the insights derived from our predictive model and additional heuristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.