Abstract
We propose a data mining (DM) approach to predict the success of telemarketing calls for selling bank long-term deposits. A Portuguese retail bank was addressed, with data collected from 2008 to 2013, thus including the effects of the recent financial crisis. We analyzed a large set of 150 features related with bank client, product and social-economic attributes. A semi-automatic feature selection was explored in the modeling phase, performed with the data prior to July 2012 and that allowed to select a reduced set of 22 features. We also compared four DM models: logistic regression, decision trees (DTs), neural network (NN) and support vector machine. Using two metrics, area of the receiver operating characteristic curve (AUC) and area of the LIFT cumulative curve (ALIFT), the four models were tested on an evaluation set, using the most recent data (after July 2012) and a rolling window scheme. The NN presented the best results (AUC=0.8 and ALIFT=0.7), allowing to reach 79% of the subscribers by selecting the half better classified clients. Also, two knowledge extraction methods, a sensitivity analysis and a DT, were applied to the NN model and revealed several key attributes (e.g., Euribor rate, direction of the call and bank agent experience). Such knowledge extraction confirmed the obtained model as credible and valuable for telemarketing campaign managers.
Highlights
Marketing selling campaigns constitute a typical strategy to enhance business
We adopted the neural network (NN) model described in Section 2.2 as the base data mining (DM) model, since preliminary experiments, using only training data, confirmed that NN provided the best AUC and area of the LIFT cumulative curve (ALIFT) results when compared with other DM methods
These preliminary experiments confirmed that support vector machines (SVM) required much more computation when compared with NN, in an expected result since sequential minimal optimization (SMO) algorithm memory and processing requirements grow much more heavily with the size of the dataset when compared with BFGS algorithm used by the NN
Summary
Marketing selling campaigns constitute a typical strategy to enhance business. Companies use direct marketing when targeting segments of customers by contacting them to meet a specific goal. Centralizing customer remote interactions in a contact center eases operational management of campaigns. Such centers allow communicating with customers through various channels, telephone (fixed-line or mobile) being one of the most widely used. Marketing operationalized through a contact center is called telemarketing due to the remoteness characteristic [16]. Contacts can be divided in inbound and outbound, depending on which side triggered the contact (client or contact center), with each case posing different challenges (e.g., outbound calls are often considered more intrusive). Technology enables rethinking marketing by focusing on maximizing customer lifetime value through the evaluation of available information and customer metrics, allowing to build longer and tighter relations in alignment with business demand [28]. It should be stressed that the task of selecting the best set of clients, i.e., that are more likely to subscribe a product, is considered NP-hard in [31]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.