Abstract

Acute inflammation is a severe medical condition defined as an inflammatory response of the body to an infection. Its rapid progression requires quick and accurate decisions from clinicians. Inadequate and delayed decisions makes acute inflammation the 10th leading cause of death overall in United States with the estimated cost of treatment about $17 billion annually. However, despite the need, there are limited number of methods that could assist clinicians to determine optimal therapies for acute inflammation. We developed a data-driven method for suggesting optimal therapy by using machine learning model that is learned on historical patients' behaviors. To reduce both the risk of failure and the expense for clinical trials, our method is evaluated on a virtual patients generated by a mathematical model that emulates inflammatory response. In conducted experiments, acute inflammation was handled with two complimentary pro- and anti-inflammatory medications which adequate timing and doses are crucial for the successful outcome. Our experiments show that the dosage regimen assigned with our data-driven method significantly improves the percentage of healthy patients when compared to results by other methods used in clinical practice and found in literature. Our method saved 88% of patients that would otherwise die within a week, while the best method found in literature saved only 73% of patients. At the same time, our method used lower doses of medications than alternatives. In addition, our method achieved better results than alternatives when only incomplete or noisy measurements were available over time as well as it was less affected by therapy delay. The presented results provide strong evidence that models from the artificial intelligence community have a potential for development of personalized treatment strategies for acute inflammation.

Highlights

  • Acute inflammation is a progressively severe medical condition defined as an inflammatory response of the body to a trauma, a surgery, a burn, or an infection

  • We presented a data-driven method for acute inflammation therapy (DD-Model predictive control (MPC)), which was evaluated through a number of experiments performed on virtual patients

  • We demonstrated that a population of 18 healthy, aseptic and septic patients was enough to learn an efficient data-driven predictive model

Read more

Summary

Introduction

Acute inflammation is a progressively severe medical condition defined as an inflammatory response of the body to a trauma, a surgery, a burn, or an infection. Model predictive control (MPC) is a method often used in clinical applications for planing of optimal treatment [2,3,4,5] mainly due to its inherent capability to handle clinically relevant constraints and to take into account multiple variables at the same time. A predictive model is the most important part of MPC, which is deployed to estimate patient’s response to the therapy. These estimations together with a set of clinically relevant constraints are used in MPC to compute optimal therapies that will lead the patient to the healthy condition. The efficacy of MPC based treatment is completely dependent on model’s capability to accurately estimate the patient’s response to therapy

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.