Abstract

The process of integrating observations into a numerical model of an evolving dynamical system, known as data assimilation, has become an essential tool in computational science. These methods, however, are computationally expensive as they typically involve large matrix multiplication and inversion. Furthermore, it is challenging to incorporate a constraint into the procedure, such as requiring a positive state vector. Here we introduce an entirely new approach to data assimilation, one that satisfies an information measure and uses the unnormalized Kullback-Leibler divergence, rather than the standard choice of Euclidean distance. Two sequential data assimilation algorithms are presented within this framework and are demonstrated numerically. These new methods are solved iteratively and do not require an adjoint. We find them to be computationally more efficient than Optimal Interpolation (3D-Var solution) and the Kalman filter whilst maintaining similar accuracy. Furthermore, these Kullback-Leibler data assimilation (KL-DA) methods naturally embed constraints, unlike Kalman filter approaches. They are ideally suited to systems that require positive valued solutions as the KL-DA guarantees this without need of transformations, projections, or any additional steps. This Kullback-Leibler framework presents an interesting new direction of development in data assimilation theory. The new techniques introduced here could be developed further and may hold potential for applications in the many disciplines that utilize data assimilation, especially where there is a need to evolve variables of large-scale systems that must obey physical constraints.

Highlights

  • Data assimilation is the process by which we merge two types of information about a dynamic system, a numerical model of the underlying processes and observations of the evolving system

  • We examine the performance of the expectation maximization (EM) and simultaneous multiplicative algebraic reconstruction technique (SMART) data assimilation filters with respect to Optimal Interpolation (OI) and the Kalman filter (KF), including the extended Kalman filter (EKF) and the ensemble Kalman filter (EnKF) for a non-linear application

  • The Kullback-Leibler data assimilation (KL-DA) results are shown to be equivalent to the OI solution, with the Kalman filter solution being superior to both (Fig 3(b))

Read more

Summary

Introduction

Data assimilation is the process by which we merge two types of information about a dynamic system, a numerical model of the underlying processes and observations of the evolving system. The resulting analysis should ideally be optimal in the sense of utilizing associated error and representativeness of the model and observations. The data assimilation procedure can be used to improve initial conditions, boundary conditions and/or parameter values of the numerical model, resulting in better estimates of the state of the system and improving predicability. Data assimilation is most prominently used in the atmospheric and oceanographic sciences where it is essential for modern numerical weather prediction [1].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.