Abstract

Distribution automation (DA) is deployed to reduce outages and to rapidly reconnect customers following network faults. Recent developments in DA equipment have enabled the logging of load and fault event data, referred to as “pick-up activity.” This pick-up activity provides a picture of the underlying circuit activity occurring between successive DA operations over a period of time and has the potential to be accessed remotely for off-line or on-line analysis. The application of data analytics and automated analysis of this data supports reactive fault management and post fault investigation into anomalous network behavior. It also supports predictive capabilities that identify when potential network faults are evolving and offers the opportunity to take action in advance in order to mitigate any outages. This paper details the design of a novel decision support system to achieve fault diagnosis and prognosis for DA schemes. It combines detailed data from a specific DA device with rule-based, data mining, and clustering techniques to deliver the diagnostic and prognostic functions. These are applied to 11-kV distribution network data captured from Pole Mounted Auto-Reclosers as provided by a leading U.K. network operator. This novel automated analysis system diagnoses the nature of a circuit’s previous fault activity, identifies underlying anomalous circuit activity, and highlights indications of problematic events gradually evolving into a full scale circuit fault. The novel contributions include the tackling of “semi-permanent faults” and the re-usable methodology and approach for applying data analytics to any DA device data sets in order to provide diagnostic decisions and mitigate potential fault scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.