Abstract

It is well known that the appearance of food, particularly its color, can influence flavor perception and identification. However, food studies involving the manipulation of product color face inevitable limitations, from extrinsic flavors introduced by food coloring to the cost in development time and resources in order to produce different product variants. One solution lies in modern virtual reality (VR) technology, which has become increasingly accessible, sophisticated, and widespread over the past years. In the present study, we investigated whether making a coffee look milkier in a VR environment can alter its perceived flavor and liking. Thirty-two United Kingdom (UK) consumers were given four samples of black cold brew coffee at 4 and 8% sucrose concentration. They wore VR headsets throughout the study and viewed the same coffee in a virtual setting. The color of the beverage was manipulated in VR, such that participants saw either a dark brown or light brown liquid as they sipped the coffee. A full factorial design was used so that each participant tasted each sweetness x color combination, Participants reported sweetness, creaminess, and liking for each sample. Results revealed that beverage color as viewed in VR significantly influenced perceived creaminess, with the light brown coffee rated to be creamier than dark brown coffee. However, beverage color did not influence perceived sweetness or liking. The present study supports the role of VR as a means of conducting food perception studies, either to gain a better understanding of multisensory integration, or, from an industry perspective, to enable rapid product testing when it may be time-intensive or costly to produce the same range of products in the real-world. Furthermore, it opens potential future opportunities for VR to promote healthy eating behavior by manipulating the visual appearance of foods.

Highlights

  • We eat with our eyes (Delwiche, 2012)

  • To better understand the drivers of coffee liking, we found that creaminess is positively correlated with liking even controlling for sweetness (r125 = 0.21, p = 0.019), whereas sweetness is not correlated with liking after controlling for creaminess (r125 = 0.11, p = 0.229)

  • The results of the present study demonstrate that color cues from virtual reality (VR) and gustatory cues from the real-world may be integrated to influence creaminess evaluation of black coffee, with coffee that appeared to be light brown rated as significantly creamier compared to coffee that appeared dark brown

Read more

Summary

Introduction

We eat with our eyes (Delwiche, 2012). Vision plays a fundamental role in the eating experience, as it evolved to facilitate foraging and feeding (Gehring, 2014; Spence et al, 2016). Over the past 50 years, studies have shown that people consistently associate each of the basic tastes with specific colors; for instance, sweetness with red/pink, sourness with green/yellow, saltiness with blue/white, and bitterness with dark colors like black and deep blue (e.g., Favre and November, 1979; Spence, 2015; Woods and Spence, 2016). Such color–taste/flavor pairs are arguably the result of associative learning, when one learns to associate a specific color with a specific gustatory cue through repeated exposure. New color-taste associations can be learned even with relatively brief exposure periods (e.g., four training sessions, Higgins and Hayes, 2019)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.