Abstract

<p>The study of complex interactions between fire and atmospheric dynamics of the earth system is drawing increasing attention in recent years, especially when fire seasons are extended due to global warming, where the historical daily burnt area data played a pivotal role in analyzing wildfire regimes change. Existing products could not fully meet the temporal requirements: daily burnt area data in global fire emissions database (GFED4) starts from mid-2000 using MODIS while ESA Fire Climate Change Initiative (FireCCILT10) Dataset from 1982 to 2017 is provided on a monthly grid.</p><p>Advanced Very High Resolution Radiometer (AVHRR) series of sensors are widely used to develop pre‐MODIS daily historical records. However, compared to MODIS, the AVHRR sensor has a lower radiometric and geometric quality and is missing Short Wave Infrared (SWIR) band. To address the data quality problem, this research study presents a time-series mapping method for daily burned area using AVHRR composite. Daily fire-sensitive indices are calculated to develop a time-series data composite which is masked by the burnable surface of GLASS_GLC land cover product. Then, Continuous Change Detection and Classification (CCDC) time-series model, which originally implemented on Landsat data monitoring land cover change, is revised to detect an abrupt change in the time-series data composite and remove noise, ensuring temporal consistency. The image of a time-series breakpoint is further classified using a spatial contextual method to distinguish biomass burning from other forest degradation change like a landslide and is used to generate burned area probability map.</p><p>The methodology is verified in California, US, where fuel aridity increased during 1984–2015 driven by anthropogenic climate change. The samples are collected based on the National Monitoring Trends in Burn Severity(MTBS)Burned Areas Boundaries Dataset from 1984 – 2018 and California Department of Forestry and Fire Protection's Fire and Resource Assessment Program (FRAP) fire perimeters from since 1950. Primary results show that the proposed method can effectively detect burned area on daily basis with CCDC algorithm reducing the complexity of change detection.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.