Abstract

Switched reluctance machines have gained interest in electric vehicle (EV) applications because of its prominent advantages. However, drawbacks as torque ripple and highly nonlinear model restrain the usage of such machines on larger scale. In this article, a minimum torque ripple point tracking (MTRPT) algorithm is proposed for online variation of turn-off angle. Also, a method for designing Dahlin cruise controllers with back electromotive force (back EMF) cancellation is presented. The system model accounts for the current profiling technique for the design. The developed model is verified through simulation and experiments. The system presents minimum torque ripple tracking capability in broad operation speed testified by ECE-R15 and extra-urban driving cycle (EUDC) driving schedules. The MTRPT convergence time achieved during a load step in simulation and experiment is around 1 s. In simulation, the speed tracking capability of the controller returns a root-mean-square error (RMSE) of 0.047 and 0.0182 rad/s for the ECE-R15 and EUDC driving cycles, respectively. When the EUDC driving schedule is tested experimentally, the MTRPT diminished the torque ripple on average by 20% compared to when the turn-off angle is fixed. The speed tracking error is 0.99% with the MTRPT and 1.3414% with the turn-off angle fixed. The results show that the system is valid for electric and hybrid EV implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call