Abstract
This paper describes the design of new centralized acceleration-based controllers for the multitask problem of motion planning and control of a coordinated lead-carrier team fixed in a dual-formation within an obstacle-ridden environment. A dϕ-strategy, where d and ϕ are Euclidean measures with respect to the lead robot, is developed to ensure virtual connectivity of the carrier robots to the lead robot. This connectivity, built into the system itself, inherently ensures globally rigid formation between each lead-carrier pair of the team. Moreover, a combination of target configuration, dϕ-strategy, orientation consensus, and avoidance of end-effector of robots results in a second, locally rigid formation (not infinitesimally rigid). Therefore, for the first time, a dual-formation control problem of a lead-carrier team of mobile manipulators is considered. This and other kinodynamic constraints have been treated simultaneously via the overarching Lyapunov-based control scheme, essentially a potential field method favored in the field of robotics. The formulation of this new scheme, demonstrated effectively via computer simulations, is timely, given that the current proposed engineering solutions, allowing autonomous vehicles on public roads, include the development of special lanes imbued with special sensors and wireless technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.